

SLOTLINE-MICROSTRIP TRANSITION ON ISO/ANISOTROPIC

SUBSTRATE: BROADBAND DESIGN

A. Podcameni and M.L. Coimbra*

CETUC - Universidade Católica
Rua Marques de S. Vicente, 209-Gávea
22453 - Rio de Janeiro-BRASIL

Abstract

The two-stub transition design is analysed on isotropic and anisotropic substrates. Broadband design is made by optimizing the slotline and the stub lengths. Sensibility analysis of the behaviour of the whole structure with these parameters shows the slotline length and impedance to be the dominant factors. An extended-octave design can easily be achieved, with VWSR less than 1.5, for double-transitions.

Introduction

Slotline-microstrip transitions have already been presented by several authors using: two quarter-wave stubs¹, open and short-circuit², and other structures^{3,4}. Transitions employing linear stubs are interesting not only because they need no substrate holes, but also because of the well known behavior of these stubs. Recently, the authors presented a letter⁵ on an accurate design of this transition under maximum power transfer conditions at the central frequency. However, an analysis of the influence of the various parameters on the bandwidth is not available and will be presented in this paper.

Broadband Analysis

The design equations for the stub lengths were obtained by applying maximum power transfer conditions to the transition model of Chambers, Cohn, Cristal and Young⁶ at the central frequency (see Fig. 1), with a separate cancellation of their end reactances in the transition reference plane :

$$l_s = (\lambda_s/2\pi) \operatorname{tg}^{-1} (Z_{os}/2\pi f_o L_{sc})$$

$$l_m = (\lambda_m/2\pi) \operatorname{tg}^{-1} (1/2\pi f_o Z_{om} C_{om})$$

*M.L. Coimbra is now with Centro de Pesquisa e Desenvolvimento / TELEBRAS

The subscripts s and m refer to the slotline and microstrip respectively, f_o is the central frequency, L_{sc} is the end inductance of the slotline and C_{om} is the open-circuit end capacitance of the microstrip.

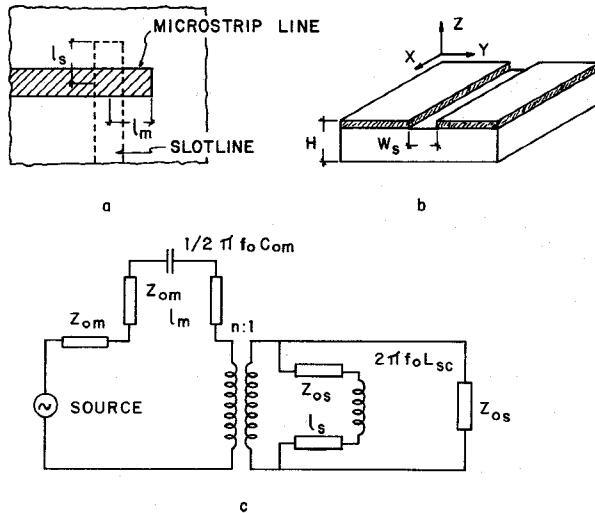


Fig. 1 SLOTLINE-MICROSTRIP TRANSITION

- a TWO-STUB TRANSITION
- b PARAMETERS OF SLOTLINE
- c EQUIVALENT CIRCUIT

Table 1 - Common-substrates transition computation for 50Ω microstrip

Substrate H=0.635mm $f_o = 4.8\text{GHz}$	AlSiMag 838 $\epsilon_r = 10.2$	Epsilonlam - 10 $\epsilon_{r,xy} = 13$ $\epsilon_{r,z} = 10.2$	Rogers 6010 $\epsilon_r = 10.5$
Z_{os}, Ω	60.28	61.34	60.38
w_s, mm	0.087	0.165	0.091
l_s, mm	7.590	7.124	7.523
l_s/λ_s	0.244	0.243	0.244
l_m, mm	5.796	5.453	5.714
l_m/λ_m	0.242	0.241	0.242

These design equations give a perfect-match condition (VWSR=1) at f_o . Outside this frequency a reactive component arises and a computer-aided evaluation was carried out using a numerical expression for L_{sc} which was obtained by curve fitting results reported elsewhere⁷. Double-transitions are often used for practical rea

sons and the above mentioned reactive component is transferred through the slotline, and is phase added to that of the second transition. The performance thus, depends on the slotline length L_s , and also on Z_{os} , ℓ_s and ℓ_m . The parameters L_s , ℓ_s and ℓ_m were used as variables in a computer simulation/optimization program. The results, and the comparison with measured data, are presented later.

Anisotropic Substrate

As some of the dielectric substrates used for MIC present anisotropy in the permittivity (eg: sapphire and 'Epsilam-10'), it is useful to have a model for the slotline microstrip transition considering this effect. Due to the particular electric field configuration, the authors have already suggested using $\epsilon_{r,xy}$ for the evaluation of λ_s and slotwidth W_s , and $\epsilon_{r,z}$ for the transform ratio⁵ n . Microstrip circuitry design has already been reported elsewhere^{8,9}. Anisotropic substrates with $\epsilon_{r,xy} > \epsilon_{r,z}$ will lead to a wider slot, compared with an isotropic one with $\epsilon_{r,xy} = \epsilon_{r,z}$, which may be useful.

Simulation and Results

The computation of transitions on three common substrates having the same height $H=0.635\text{mm}$, is shown in Table 1 for the central frequency $f_o=4.8\text{ GHz}$. As there is no benefit, concerning wideband response, in using a slotline longer than $\lambda_s/2$, simulation starts with this length value. Also, it is assumed in this work that a VSWR ≤ 1.5 is acceptable.

The anisotropic substrate was first chosen to be used in a double-transition simulation and the results are shown in Fig. 2 for $L_s = (\lambda_s/2)$ with ℓ_s , ℓ_m and Z_{os} as given in Table 1. A perfect-match condition is obtained at the central frequency. Using the VSWR ≤ 1.5 criteria, a relative bandwidth of 55% is observed. If only the stub lengths are allowed to vary, no substantial bandwidth increase is obtained, although there is a small change in the shape of the response. An equiripple situation is also shown in Fig. 2 for stub lengths of $\ell_s = 7.029\text{mm}$ ($0.239\lambda_s$), and $\ell_m = 5.348\text{mm}$ ($0.236\lambda_m$) yielding a relative bandwidth of 58%. This example illustrates how ineffective stub-tuning is. These cases were not tested experimentally.

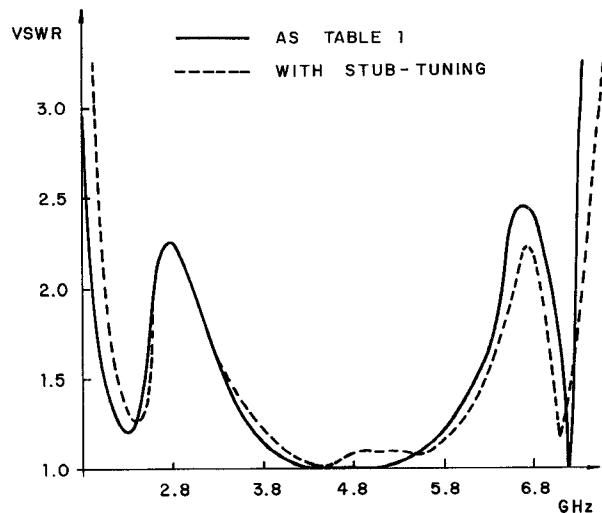


Fig. 2 SIMULATED DOUBLE-TRANSITIONS WITH NON-OPTIMAL SLOTLINE LENGTHS

In the second simulation, only the slotline length is allowed to vary, as distinct from the former example. The stub lengths are those from Table 1. The simulated response when the slotline length is quasi-optimal, $L_s = 8.0\text{mm}$ ($0.273\lambda_s$), is shown in Ref. [5]. Such a transition was tested experimentally and the results are shown there. A 93% relative bandwidth is obtained, illustrating the significant importance of the slotline length.

In the third simulation all the parameters were varied. The best result obtained is shown in Fig. 3. The corresponding stub lengths are $\ell_s = 7.054\text{mm}$ and $\ell_m = 5.523\text{mm}$, and the slotline has a length of 8.8 mm with $Z_{os} = 61.34\Omega$. Measured results are also shown and a relative bandwidth of 106% is obtained.

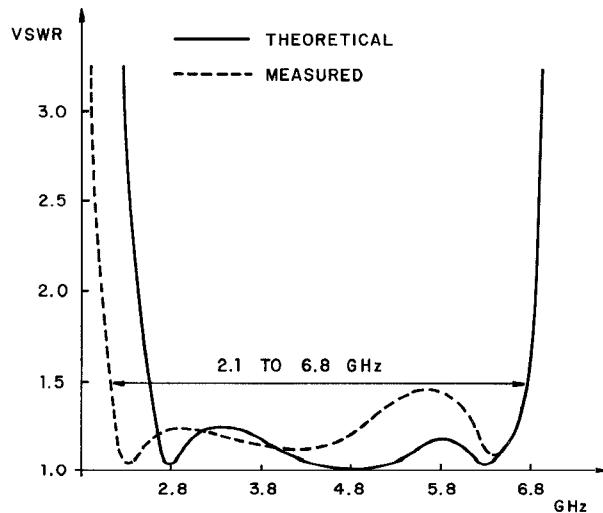


Fig. 3 OPTIMIZED DOUBLE-TRANSITION ON EPSILAM-10

A similar procedure with the isotropic substrate Rogers 6010 was followed with the best simulated response shown in Fig. 4 for $L_s = 8.8\text{mm}$, $l_s = 7.455\text{mm}$, $l_m = 5.725$ and $Z_{os} = 60.38\Omega$. Measured results show a relative bandwidth of 101%, quite similar to the anisotropic case.

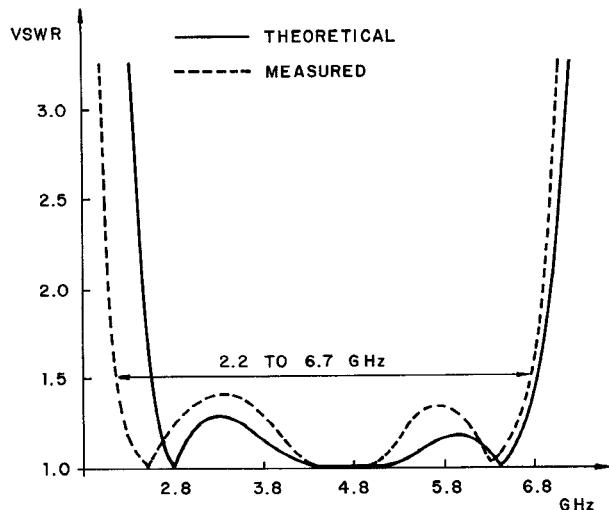


Fig. 4 OPTIMIZED DOUBLE-TRANSITION ON ROGERS-6010

The experimental devices were made with a copper coating of $12\mu\text{m}$. The final-art dimensions were checked with a Carl Zeiss tracking microscope yielding an accuracy of $\pm 2\mu\text{m}$; no tuning was done.

Conclusions

From an accurate maximum-power-transfer at central frequency method, a broadband design was implemented for the two-stub transition. Several simulations on different substrates have shown that slotline length has a major influence on the double-transition performance if a low VSWR, broad band and sharp cutoff are wanted. Stub-tuning has less effect on the bandwidth; it may rather alter the ripple inside the band. Simulations also showed that the slotline impedance must be the correct one-within a tolerance not greater than 3 to 5% - otherwise poor results are obtained. Experimental results are in good agreement with those predicted by the simulations.

It is believed that the extended-octave design, obtained here, is in most cases sufficient for the realization of practical devices with this transition, such as filters, transformers, hybrids and couplers.

Acknowledgements

The authors are in debt with Prof^a Maria Cristina Ribeiro Carvalho, from our Center, for valuable discussions, and with Gino Vita for technological help. This work was supported by Telecomunicações Brasileiras S.A., under contract 017/79-PUC/TELEBRAS.

References

- (1) KNORR, J.B.: "Slotline transitions", IEEE Trans., 1974, MTT-22, pp.548-554.
- (2) DE RONDE, F.C.: "A new class of microstrip directional coupler". Digest of technical papers, G-MTT symposium, 1970, pp.184-189.
- (3) GUPTA, K.C., GARG, R. and BAHL, I.J.: "Microstrip lines and slotlines". (Artech House Inc., 1979), pp.235-244.
- (4) SCHIEK, B. and KOHLER, J.: "An improved microstrip-to-microslot transition", IEEE Trans., 1976, MTT-24, pp.231-233.
- (5) PODCAMENI, A. and COIMBRA, M.L.: "Slotline-microstrip transition on iso/anisotropic substrate: a more accurate design", Eletron. Lett. Vol. 16, № 20, pp. 780-781.
- (6) CHAMBERS, D., COHN, S.B., CRISTAL, E.G. and YOUNG, F.: "Microwave active network synthesis". Stanford Research Institute, Menlo Park, California, semiannual, report, June 1970.
- (7) KNORR, J.B. and SAENZ, J.: "End effects in a shorted slot", IEEE Trans., 1973, MTT -21, pp. 579-582.
- (8) SZENTKUTI, B.T.: "Simple analysis of anisotropic microstrip lines by a transform method", Eletron. Lett. Vol. 12, № 25 , pp. 672-673.
- (9) HORNO, M.: "Calculation of quasi-static characteristics of microstrip on anisotropic substrate using mapping method" , IEEE, Int. Micr. Symp. Dig., MTT-S, 1980, pp. 450-452.